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A variational calculation is performed to determine the upper and lower bound of the eigenvalue of the 
ground state of a three-body system with two types of two-body, central potential without hard core. 
The trial wave function used is a function which is a product of the solution of the two-nucleon Schrodinger 
equation up to a certain internucleon separation, which goes over into a variation function for larger dis
tances. The calculation is done by a Monte Carlo method. The results show that with this type of trial wave 
function, the upper and lower bound are rather close to each other, with the difference between the values 
of the two bounds equal to only about 3 % of the magnitude of the upper bound. 

I. INTRODUCTION 

WHEN a two-body potential with a hard core is 
used in a variational calculation to determine 

the binding energy of a few-body system, it is necessary 
to choose a trial wave function which can allow for a 
faithful reproduction of the behavior of the exact wave 
function immediately outside the region of the hard 
core, where the attractive potential has a large depth. 
If the trial wave function fails to meet this requirement, 
the upper bound obtained will, in general, be rather far 
away from the eigenvalue. To deal with calculations of 
this kind in which a hard-core potential is involved, 
Austern and Iano1 have recently proposed a type of 
trial wave function which focuses particular attention 
on the region of strong attractive interaction. In this 
type, the trial wave function is chosen as a product of 
the solution of the two-body Schrodinger equation up 
to a certain internucleon separation which goes over 
into a variational function for larger distances. To test 
the usefulness of this type of trial function, calculations 
have been made to determine the binding energy of a 
two-body system with a square-well potential contain
ing a hard core1 and to find the energy of the 315o state 
in Li6.2 In the former case, an upper bound of —3.92 
MeV is obtained, which is to be compared with the 
eigenvalue of —4.13 MeV. The fact that there is still a 
comparatively large difference of 0.21 MeV between the 
upper bound and the eigenvalue arises as a consequence 
of the choice of a square well as the shape of the two-
body potential. The discontinuity in this potential 
necessitates choosing the separation distance in the 
trial wave function to be at the edge of the square-well 
potential,3 which was purposely not done by Austern 
and Iano. However, the advantage of this type of trial 

* Work supported by the U. S. Atomic Energy Commission. 
1 N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960). 
2 P. H. Wackman and N. Austern, Nucl. Phys. 30, 529 (1962). 
3 E. W. Schmid, Y. C. Tang, and R. C. Herndon, Nucl. Phys. 

42, 247 (1963). 

wave function was still clearly demonstrated over many 
other types of trial functions.1 In the case of Li6, it was 
also found that the determination of the energy of the 
zlSo state can be made more reliable with this type of 
trial wave function. However, due to some approxi
mations made in their calculation, it was not possible 
to discuss how close the upper bound is to the energy of 
this state. In our opinion, therefore, these two examples 
show quite impressively the promise of this type of 
wave function in variational calculations on few-body 
problems, but do not demonstrate the degree of accu
racy which one can hope to achieve with this wave 
function. 

In this investigation, we shall calculate with this type 
of wave function both the upper and the lower bound of 
the energy eigenvalue of a three-body system. The two-
body potentials used will not contain a hard core; they 
will be those which have been utilized in accurate 
calculations performed by other investigators. From the 
values of these two bounds, we will gain some informa
tion about how good this trial wave function is. It is 
true, of course, that from this study, no definitive state
ment can be made concerning the accuracy of this type 
of trial function in the case where a hard-core two-body 
potential is involved. However, if the two bounds 
should turn out to be close to each other, then this 
calculation would at least serve to give the indication 
that further calculation with hard-core potential using 
this trial function may also yield upper bound which is 
fairly close to the eigenvalue. 

The method of calculation is discussed in the next 
section. In Sec. I l l , the numerical results will be pre
sented and in Sec. IV, a discussion of the results will be 
made. 

II. METHOD OF CALCULATION 

The upper bound will be computed by the usual 
Rayleigh-Ritz method, i.e., 

E0^EU=(H), (1) 
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where E0 is the lowest eigenvalue of the Hamiltonian. 
For the lower bound, we adopt a method of Temple5 

which gives 

E,^ EL= (H)- «f l»>- m / f r - (H)), (2) 

with Ei being the exact energy of the first excited state 
having the same symmetry property as the ground state. 
The choice of the two-body potentials used in this 
investigation will insure that Ei denotes the energy of 
the configuration in which two particles form a bound 
state and the third particle is far away. Thus, E\ can be 
obtained quite easily by a numerical solution of the 
two-body Schrodinger equation. 

I t might be appropriate to mention here that if a 
trial wave function is capable of reproducing faithfully 
the behavior of the exact wave function in the region of 
small internucleon separation and has enough flexibility 
at larger distances, the computation of the lower bound 
can be very fruitful. In a previous calculation,4 we have 
demonstrated this point by a calculation on a two-body 
system using a potential of the Yukawa shape and a 
Hulthen-type trial wave function. For an eigenvalue of 
— 2.3071 MeV, the upper and lower bound obtained 
were -2 .3054 and -2 .3640 MeV, respectively. Thus, 
in this particular instance, the gap between the two 
bounds is only 3 % of the eigenvalue, which shows 
clearly the usefulness of the lower-bound method. 

For convenience, we shall consider our three-body 
system as a fictitious triton. Since, in this investigation, 
the trial wave function will be assumed to contain only 
the configuration in which the two neutrons are in a 
space-symmetric state, the spatial part can be written as 

^= f(ri2)g{ru)g(rn) , (3) 

in which 1, 2 denote the neutrons and 3 denotes the 
proton. For the function f(r), we use 

f(r) = Uf(r)/r, (r<df) 

Af[exp(—a/r)+Bf exp(—0/r)] 
= (r>df), (4) 

^1/2 

where Uf(r) is a solution of the equation 

fi2 d2 

—Uf(r)+\:vf(r)-eflUf(r) = 0, (5) 
m dr2 

with V/(r) being the effective potential between the 
neutron pair. The constants Af and Bf in Eq. (4) are 
adjusted such that the function f(r) and its first 
derivative are continuous at the separation distance 
df. There are a total number of four variational param
eters in this function, namely, e/, df, a/, and /?/. The 
function g(r) is defined in a similar fashion, except that 
the potential function in Eq. (5) is replaced by the 
effective potential Vg(r) between a neutron-proton 

4 E. W. Schmid, Y. C. Tang, and R. C. Herndon, Nucl. Phys. 
42, 95 (1963). 

5 G. Temple, Proc. Roy. Soc. (London) 119, 276 (1928). 

pair. The variational parameters in this latter function 
are eg, dgy ag, and ftg. 

If the two-body potential used is spin-independent, 
the functions f(r) and g(r) are identical. In this case, 
the total number of variational parameters will then be 
only four, i.e., e, d, a, and /?. 

The factor r1/2 in the functions f(r) and g(r) is chosen 
such that the asymptotic behavior is given correctly. 
For instance, when the proton is far away from the two 
neutrons, the wave function \p takes on the asymptotic 
form 

^f(r12)exp(~2agR)/R, (6) 

where R is the distance from the proton to the center of 
mass of the two neutrons. The parameter ag is thus 
related to the separation energy of the proton. If we 
have some idea about the magnitude of this separation 
energy, a fairly good guess for the value of ag to start 
the variational process can then be obtained. This is 
useful in a variational, calculation, since if one can start 
with a set of values for the parameters which are close 
to the optimum values, the time of computation can be 
greatly reduced. 

The starting point for the search of the optimum 
values of df, dg, e/, and eg can also be fixed easily. I t has 
been pointed out by Austern and Iano1 that the upper 
bound is rather insensitive to these parameters. In our 
actual calculation, we have found that this is indeed so. 
Both the upper and the lower bound are especially 
insensitive to the variation of df and dg. In fact, in some 
of the cases considered in this investigation, we have 
merely fixed them at a reasonable value without further 
variation. For ef and eg, our experience indicates that 
they can be set as zero initially. After the best values 
for af, ag, 0/, and 0g are found, e/ and eg are then varied 
to improve the value of the two bounds. In this manner, 
we can usually get the best possible values of the upper 
and lower bound obtainable with the type of trial wave 
function used in this investigation. 

All the integrals which arise from the computation of 
the expectation value of the Hamiltonian and of the 
square of the Hamiltonian are done by a Monte Carlo 
method. As this method has already been discussed in 
detail previously,4-6 we shall not discuss it further here. 

The numerical calculation was carried out on an 
IBM-7094 computer. To insure a high degree of accu
racy, double-precision arithmetic has been used in the 
computation whenever it was felt necessary. 

III. NUMERICAL CALCULATIONS 

Two types of central potential without hard core have 
been considered. These were the potentials used in the 
calculations of Rarita and Present7 and of Baker et al.8 

We choose these potentials in this investigation since we 

6 E . W. Schmid, Nucl. Phys. 32, 82 (1962). 
7 W. Rarita and R. D. Present, Phys. Rev. 51, 788 (1937). 
8 G. A. Baker, Jr., J. L. Gammel, B. J. Hill, and J. G. Wills, 

Phys. Rev. 125, 1754 (1962). 
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feel that the results obtained by these authors are quite 
accurate and hence, useful for purpose of comparison 
with the upper and lower bound obtained in this 
calculation. 

A. Calculation with an Exponential Potential 

The two-body potential used here is a potential with 
purely Majorana space-exchange character. I t has 

Vt(r)=-V0exp(~Kr), 

F.(r) = 0.577«(r), 
with 

V0= 123.56 MeV, K= 1.156 F" 1 , 

in the triplet-even and singlet-even state, respectively. 
This potential was used by Rarita and Present in a 
study of the two-, three-, and four-body problems.7,9 

To test the accuracy of the Monte Carlo method, we 
have first computed with the potential given by Eq. (7) 
and a trial wave function which has a spatial part of the 
form 

^=exp[~7( r i2+f i8+f23) ] . (8) 

With this wave function, the expectation value of the 
Hamiltonian can be calculated analytically and the 
result is -7 .470 MeV with 7=0.39 F"1. With our 
Monte Carlo method, we get Eu= — 7.47±0.11 MeV 
with 40 000 estimates. The amount of computing time 
needed on the IBM 7094 computer was 15 min. 

For a two-body potential with spin dependence, the 
wave function for the triton has the form 

* = * . X « + l M . , (9) 

where \f/s and \f/a are spatial wave functions which are 
symmetrical and antisymmetrical in the space coordi
nates of the two neutrons, respectively. The functions 
Xa and Xs are spin functions, with Xa antisymmetrical 
and Xs symmetrical in the spin coordinates of the two 
neutrons. Since the main purpose of this investigation 
is to examine how appropriate our trial wave function 
described by Eqs. (3)-(5) is as \f/8, we shall ignore the 
part \//aXs. Due to this simplification, our upper bound 
will be at least about 0.22 MeV different from the exact 
eigenvalue, as was found by Rarita and Present.7 

The fact that we ignore the part \paXs in Eq. (9) makes 
it necessary to compute the lower bound with effective 
potentials V/(r) of the neutron-neutron pair and Vg(r) 
of the neutron-proton pair instead of the two-body 
potential given by Eq. (7). This is so, since otherwise, 
the gap between the two bounds would arise mainly as 
a consequence of our omission of the part \paXs rather 
than from the inaccuracy of our trial wave function as 
against the best possible form of \f/s. These effective 
potentials will also have a Majorana character and be 

9 Rarita and Present (Ref. 7) used #2/m = 41.12 M e V - F 2 in 
their calculation, while we use ft2/m — 41A7 MeV—F2. However, 
all their results quoted here have been adjusted for this difference, 

of the form 
Vf(r)=V.(r), 

Vg(r) = iVs(r)+iVt(r), (10) 

in the even orbital-angular-momentum states. 
The search for optimum values in the 8-parameter 

space is done with 4000 estimates. After the search is 
over, more estimates are then taken to achieve the 
desired degree of statistical accuracy for both the upper 
and the lower bound. In total, the amount of computing 
time spent is about 3 h on the IBM 7094 computer. 

With 35 000 estimates, we obtain 

E „ = - 7 . 8 1 ± 0 . 0 7 M e V , 

£ L = - 8 . 3 1 ± 0 . 1 6 M e V , (11) 

with the uncertainty representing the standard devi
ation calculated by our Monte Carlo method. In the 
calculation of E L , a value of E\ equal to —1.06 MeV 
determined by solving the two-body Schrodinger 
equation with an effective potential Vg(r) is used. 

The optimum values of the parameters are a/ =0.23 
F - \ pf= 1.35 F-1 , df= 1.2 F, */=4.0 MeV, a , = 0.27 F"1, 
Pg= 1.65 F_ 1 , dg= 1.2 F, eg=0 for the upper bound and 
a / = 0 . 2 4 F - 1 , /? / =1.30F- 1 , df=1.2F, */=4.0 MeV, 
% = 0 . 2 6 F ~ 1 , ^ = 1 . 6 5 F"1, d0=1.2F, eg=-4.0 MeV 
for the lower bound. As is expected, both the upper 
bound and the lower bound are insensitive to the 
parameters df and dg. In fact, any value between 1.0 
and 1.5 F seems to be appropriate. 

The gap between the two bounds is only 0.5 MeV in 
this case. Since we know from our previous study on the 
deuteron4 and from the calculation on the helium atom10 

that the eigenvalue is usually much closer to the upper 
bound than to the lower bound,11 we are inclined to 
believe that the eigenvalue is probably not more than 
0.05 MeV away from the upper bound. This shows that 
the trial wave function used here is a good approxi
mation to the exact eigenfunction, which is also mani
fested by the fact that the optimum parameters for the 
upper bound are very nearly the same as those for the 
lower bound. 

Rarita and Present7 have examined the three-body 
problem using a Hylleraas-type variational function 
with a large number of parameters. The result they 
obtained with \//sXa part alone of Eq. (9) was —7.79 
MeV for the upper bound, which is in very good agree
ment with our value given in Eq. (11). 

We have also calculated with a two-body potential 
which is the same in the even state as that described by 
Eq. (7), but has no space-exchange dependence. With 
this potential, Eu is found to be —7.89 MeV, which 
is only 0.08 MeV more than that obtained with a 
Majorana-type force. This shows that the exact nature 
of the two-body potential in the odd orbital-angular-

» T . Kinoshita, Phys. Rev. 115, 366 (1959); 105, 1490 (1957). 
11 G. L. Caldow and C. A, Coulson. Proc, Cambridge PhiL Soc. 

57, 341 (1961). 
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momentum state is not too important as far as its 
influence on the binding energy of the triton is con
cerned, which is of course to be expected from physical 
grounds. 

Also, we have examined this problem with a trial 
wave function which is totally space symmetric, i.e., 
f(r) = g(r). The purpose is to see how much worse the 
upper bound will be if such a simplified trial function is 
used. For the same reason as explained in a previous 
paragraph, the lower bound will again be calculated 
with effective potentials which have the form 

F/(r)=V,(r) = i7«(r)+i7.(r), (12) 

in this case. The results we get with 40 000 estimates are 

£ w = - 7 . 6 5 ± 0 . 0 5 M e V , 

EL= -7.84=1=0.11 MeV. (13) 

Here, EL is calculated with Ex= —0.35 MeV obtained 
with the effective potential V0(r). The optimum param
eters are a=0.26 F~\'/3= 1.60 F~\ d=1.2 F, e=0 for the 
upper bound and o:=0.25 F"1, 0=1.60 F"1, d=1.2 F, 
e= —1.0 MeV for the lower bound. The closeness 
between the two bounds indicates that not much 
further improvement in the upper bound can be ex
pected as a result of improving the function f(r). If one 
wishes to obtain a value for the upper bound closer to 
the eigenvalue of the triton, then one should rather 
include the \//aXs part of Eq. (9) and make the function 
f(r) not identical to g(r). 

From Eqs. (11) and (13), we see that the improve
ment in Eu, by using a function which is not totally 
space symmetric, is only 0.16 MeV. Thus, in a calcu
lation where an improvement of this magnitude is not 
considered as important, one should certainly use a 
totally space-symmetric trial wave function, since the 
amount of computing time saved by reducing the 
number of variational parameters from eight to four 
will usually be substantial. 

B. Calculation with a Gaussian Potential 

The two-body potential used by Baker et al.8 will be 
considered next. I t has the form 

Vt(r)= F . ( r )= - 5 1 . 5 e x p [ - (r/6)2]MeV, (14) 

with b= 1.60 F. The interaction in the odd states does 
not need to be specified, since the lack of spin depend
ence insures the eigenfunction to be totally space 
symmetric. 

We have also tested the Monte Carlo method with 
this two-body potential and a trial wave function which 
has a spatial part 

^=exp[ -X(f 1 2
2 +r 1 3

2 +r 2 3 2 ) ] . (15) 

The upper bound can be calculated analytically in this 

case; it is -6 .907 MeV with A =0.10 F~2. With the 
Monte Carlo method, we obtain Eu= - 6 . 89±0 .06 MeV 
after 60 000 estimates. The closeness of these two values 
again indicates that our Monte Carlo method yields 
accurate results. 

Since with a spin-independent potential there are 
only four parameters in the trial wave function, the 
search for optimum values of the parameters can be 
done with a comparatively small amount of computing 
time. The results for the two bounds with 80 000 
estimates are 

£ w = - 9 . 7 4 ± 0 . 0 5 M e V , 

EL= -10 .04±0 .07 MeV. (16) 

The value of Ex in this case is —0.40 MeV. 
The values of the optimum parameters are a =0.288 

F-1 , 0=5.15 F-1 , d= 1.5 F, e= - 2 . 0 MeV at the upper 
bound and a= 0.292 F" 1 , 0= 2.55 F"1, d= 1.8 F, e= - 0 . 6 
MeV at the lower bound. Although the values of /? at 
the two bounds seem to be quite different, the wave 
functions do not differ by more than 2% at all values of 
internucleon distances which are of interest. 

The gap in this case is 0.30 MeV, which is only about 
3 % of the value of the upper bound. This indicates 
again that the type of trial wave function described by 
Eqs. (3)-(5) is capable of yielding an upper bound very 
close to the eigenvalue. In this particular example, we 
think that the difference between the upper bound and 
the eigenvalue is in all likelihood less than 0.05 MeV. 

I t might also be interesting to estimate the accuracy 
of our trial function directly. For this purpose, let us 
write 

^ = ( l - e W o + ^ ' , (17) 
where 

<*',*o>=0, 

W > = 1 , (18) 

and ^o represents the normalized ground-state eigen
function. The quantity e is thus a parameter to measure 
the deviation of \f/ from fa. I t is quite easy to show that10 

e^(Eu-EL)/(E1-EL). (19) 

With optimum parameters of the lower bound, Eu and 
EL are - 9 . 7 1 MeV and -10 .04 MeV, respectively. 
Using these values, we get 

e2<0.04, (20) 
which in turn gives 

<lWo>>0.98. (21) 

This shows that the trial function ^ is a good repre
sentation of the eigenfunction ^0 in this particular case. 

With the same two-body potential but a different 
method of calculation, Baker et al.s obtained a value of 
— 9.42 MeV for the energy of the three-body system, 
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while Kalos12 obtained a value of —9.47 MeV. In com
paring with our value of the upper bound, there is a 
difference of about 0.3 MeV.13 Normally, a difference of 
this magnitude will not be considered as substantial, but 
since we consider the methods of both Baker et al. and 
Kalos as quite accurate, the fact that such a difference 
exists is somewhat astonishing. It is possible that the 
numerical accuracy of the result of Baker et al. may be 
impaired to a certain degree by their use of a rather 
large mesh spacing. In their numerical calculation, they 
used a mesh spacing of about 0.1 F, while we use a much 
smaller spacing of 0.005 F. In our code, such a small 
spacing is admissible, since double-precision arithmetic 
is employed whenever necessary to avoid error by 
truncation. 

12 M. H. Kalos, Phys. Rev. 128, 1791 (1962). 
13 It is interesting to point out that already for a simpler trial 

wave function 
3 

xP= n [ e x p ( - a ^ 2 ) + C e x p ( - / 3 ^ 2 ) ] 

with three variational parameters, the upper bound is —9.63 
±0.04 MeV with 50 000 estimates. 

INTRODUCTION 

THE total cross section for nuclear resonance 
scattering and, in particular, for Mossbauer 

scattering or absorption depends directly on the internal 
conversion coefficient of the gamma transition involved. 
It is important to have a knowledge of this coefficient 
if the aim of an experiment is to determine the Debye-
Waller factors or to find the optimum conditions for a 
Mossbauer experiment. Conversely, the conversion 
coefficient can be deduced from a Mossbauer experiment 
if all the other conditions are known. 

The present work deals with the determination of the 
conversion coefficient from studies of the Mossbauer 
effect in Tm169. The 8.42-keV transition from the f state 
to the J ground state has been employed in several 

* This work was performed under the auspices of the U. S. 
Atomic Energy Commission. 

IV. CONCLUSION 

This investigation shows that the type of trial wave 
function used here is capable of yielding very accurate 
results. For both types of two-body potential consid
ered, the gap between the upper and the lower bound is 
so small as to allow us to make a good estimate of the 
eigenvalue. Also, it is quite easy to employ this wave 
function in a numerical calculation. Although it may 
sometimes contain as many as eight parameters, at 
least four of them, namely, the separation distances d 
and the energy parameters e, can be assigned good 
starting values and need very little subsequent variation. 

At present, we are using this type of trial wave func
tion to investigate the binding energies of the alpha 
particle, the hypernuclei and the helium molecules. 
From the closeness of the upper and lower bound found 
in this calculation, we believe that reliable estimates of 
the binding energies will be obtained in all these cases. 
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Mossbauer experiments.1 This transition has pre
dominantly magnetic-dipole character, and the state 
from which it originates is well understood2 from the 
point of view of nuclear structure being a member of a 
rotational band. Its energy, however, is so low that a 
theoretical conversion coefficient can only be estimated 
from extreme extrapolations of Rose's3 tables. Such an 
estimate is probably good to a factor of 2 only. 

There is, however, an indirect way of estimating the 
value of the conversion coefficient. The lifetime of the 

1 M. Kalvius, W. Wiedemann, R. Koch, P. Kienle, and H. 
Eicher, Z. Physik 170, 267 (1962); M. Kalvius, P. Kienle, H. 
Eicher, and W. Wiedemann, ibid. 172, 231 (1963); R. G. Barnes, 
E. Kankeleit, R. L. Mossbauer, and J. M. Poindexter, Phys. Rev. 
Letters 11, 253 (1963); R. L. Cohen, Phys. Letters 5, 177 (1963). 

2 E. N. Hatch, F. Boehm, P. Marmier, and J. W. M. DuMond, 
Phys. Rev. 104, 745 (1956); P. Alexander and F. Boehm, Nucl. 
Phys. 46, 108 (1963). 

3 M. E. Rose, Internal Conversion Coefficients (North-Holland 
Publishing Company, Amsterdam, 1958). 
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The absolute yield of the Mossbauer absorption of the 8.42-keV transition in Tm169 was determined for a 
thulium oxide and a thulium metal absorber. The 8.42-keV gamma ray was resolved from the L x rays of 
erbium by means of a flat lithium fluoride crystal diffraction spectrometer. From the observed Mossbauer 
absorption effect the total conversion coefficient «tot — 325±35 and the magnetic transition rate of B(M1, 
| _> i) =5.1X10-2 {eh/2Mc)2 was derived. 


